Package: rgnoisefilt 1.1.2

rgnoisefilt: Elimination of Noisy Samples in Regression Datasets using Noise Filters

Traditional noise filtering methods aim at removing noisy samples from a classification dataset. This package adapts classic and recent filtering techniques for use in regression problems, and it also incorporates methods specifically designed for regression data. In order to do this, it uses approaches proposed in the specialized literature, such as Martin et al. (2021) [<doi:10.1109/ACCESS.2021.3123151>] and Arnaiz-Gonzalez et al. (2016) [<doi:10.1016/j.eswa.2015.12.046>]. Thus, the goal of the implemented noise filters is to eliminate samples with noise in regression datasets.

Authors:Juan Martin [aut, cre], José A. Sáez [aut], Emilio Corchado [aut], Pablo Morales [ctb], Julian Luengo [ctb], Luis P.F. Garcia [ctb], Ana C. Lorena [ctb], Andre C.P.L.F. de Carvalho [ctb], Francisco Herrera [ctb]

rgnoisefilt_1.1.2.tar.gz
rgnoisefilt_1.1.2.zip(r-4.5)rgnoisefilt_1.1.2.zip(r-4.4)rgnoisefilt_1.1.2.zip(r-4.3)
rgnoisefilt_1.1.2.tgz(r-4.4-any)rgnoisefilt_1.1.2.tgz(r-4.3-any)
rgnoisefilt_1.1.2.tar.gz(r-4.5-noble)rgnoisefilt_1.1.2.tar.gz(r-4.4-noble)
rgnoisefilt_1.1.2.tgz(r-4.4-emscripten)rgnoisefilt_1.1.2.tgz(r-4.3-emscripten)
rgnoisefilt.pdf |rgnoisefilt.html
rgnoisefilt/json (API)
NEWS

# Install 'rgnoisefilt' in R:
install.packages('rgnoisefilt', repos = c('https://juanmartinsantos.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/juanmartinsantos/rgnoisefilt/issues

On CRAN:

4.00 score 2 stars 3 scripts 136 downloads 22 exports 53 dependencies

Last updated 1 years agofrom:3c460cb292. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 26 2024
R-4.5-winNOTEOct 26 2024
R-4.5-linuxNOTEOct 26 2024
R-4.4-winNOTEOct 26 2024
R-4.4-macNOTEOct 26 2024
R-4.3-winOKOct 26 2024
R-4.3-macOKOct 26 2024

Exports:discCNNdiscENNdiscNCLdiscTLregAENNregBBNRregCNNregCVCFregDFregEFregENNregFMFregGEregHRRFregIPFregIRFregRNDregRNNrfCDFrfDROP2rfDROP3rfMIF

Dependencies:arulesbackportsbroomclassclicolorspacecpp11dplyre1071entropyfansifarverFNNgbmgenericsggplot2gluegtableigraphinfotheoisobandkknnlabelinglatticelifecyclemagrittrMASSMatrixmgcvmodelrmunsellnlmennetpillarpkgconfigproxypurrrR6randomForestRColorBrewerrlangrpartscalesstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithr

Introduction to the rgnoisefilt package

Rendered fromrgnoisefilt.Rmdusingknitr::rmarkdownon Oct 26 2024.

Last update: 2023-09-18
Started: 2023-09-18

Readme and manuals

Help Manual

Help pageTopics
Condensed Nearest Neighbors for Regression by DiscretizationdiscCNN discCNN.default discCNN.formula
Edited Nearest Neighbors for Regression by DiscretizationdiscENN discENN.default discENN.formula
Neighborhood Cleaning Rule for Regression by DiscretizationdiscNCL discNCL.default discNCL.formula
Tomek Links for Regression by DiscretizationdiscTL discTL.default discTL.formula
Plot function for class rfdataplot.rfdata
Print function for class rfdataprint.rfdata
All-k Edited Nearest Neighbors for RegressionregAENN regAENN.default regAENN.formula
Blame Based Noise Reduction for RegressionregBBNR regBBNR.default regBBNR.formula
Condensed Nearest Neighbors for RegressionregCNN regCNN.default regCNN.formula
Cross-Validated Committees Filter for RegressionregCVCF regCVCF.default regCVCF.formula
Dynamic Filter for RegressionregDF regDF.default regDF.formula
Ensemble Filter for RegressionregEF regEF.default regEF.formula
Edited Nearest Neighbors for RegressionregENN regENN.default regENN.formula
Fusion of Multiple Filters for RegressionregFMF regFMF.default regFMF.formula
Generalized Edition for RegressionregGE regGE.default regGE.formula
Hybrid Repair-Remove Filter for RegressionregHRRF regHRRF.default regHRRF.formula
Iterative Partitioning Filter for RegressionregIPF regIPF.default regIPF.formula
Iterative Robust Filter for RegressionregIRF regIRF.default regIRF.formula
Regressand Noise Detection for RegressionregRND regRND.default regRND.formula
Reduced Nearest Neighbors for RegressionregRNN regRNN.default regRNN.formula
Covering Distance Filtering for RegressionrfCDF rfCDF.default rfCDF.formula
Decremental Reduction Optimization Procedure for RegressionrfDROP2 rfDROP2.default rfDROP2.formula
Decremental Reduction Optimization Procedure 3 for RegressionrfDROP3 rfDROP3.default rfDROP3.formula
Mutual Information-based Filter for RegressionrfMIF rfMIF.default rfMIF.formula
Summary function for class rfdatasummary.rfdata